Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(4): 956-965, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36689320

RESUMO

The synthesis of novel aluminyl anion complexes has been well exploited in recent years. Moreover, the elucidation of the structure and reactivity of these complexes opens the path toward a new understanding of low-valent aluminum complexes and their chemistry. This work computationally treats the substituent effect on aluminyl anions to discover suitable alternatives for H2 activation at a high level of theory utilizing coupled-cluster techniques extrapolated to the complete basis set. The results reveal that the simplest AlH2- system is the most reactive toward the activation of H2, but due to the low steric demand, severe difficulty in the stabilization of this system makes its use nonviable. However, the results indicate that, in principle, aluminyl systems with -C, -CN, -NC, and -N chelating centers would be the best choices of ligand toward the activation of molecular hydrogen by taking care of suitable steric demand to prevent dimerization of the catalysts. Furthermore, computations show that monosubstitution (besides -H) in aluminyl anions is preferred over disubstitution. So our predictions show that bidentate ligands may yield less reactive aluminyl anions to activate H2 than monodentate ones.

2.
Chemistry ; 29(16): e202203806, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36511153

RESUMO

The use of a sterically demanding pincer ligand to prepare an unusual square planar aluminium complex is reported. Due to the constrained geometry imposed by the ligand scaffold, this four-coordinate aluminium centre remains Lewis acidic and reacts via differing metal-ligand cooperative pathways for activating ketones and CO2 . It is also a rare example of a single-component aluminium system for the catalytic reduction of CO2 to a methanol equivalent at room temperature.

3.
Molecules ; 29(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202630

RESUMO

A series of four novel heteroleptic Cu(I) complexes, bearing bis(1H-indazol-1-yl)methane analogues as N,N ligands and DPEPhos as the P,P ligand, were synthesised in high yields under mild conditions and characterised by spectroscopic and spectrometric techniques. In addition, the position of the carboxymethyl substituent in the complexes and its effect on the electrochemical and photophysical behaviour was evaluated. As expected, the homoleptic copper (I) complexes with the N,N ligands showed air instability. In contrast, the obtained heteroleptic complexes were air- and water-stable in solid and solution. All complexes displayed green-yellow luminescence in CH2Cl2 at room temperature due to ligand-centred (LC) phosphorescence in the case of the Cu(I) complex with an unsubstituted N,N ligand and metal-to-ligand charge transfer (MLCT) phosphorescence for the carboxymethyl-substituted complexes. Interestingly, proper substitution of the bis(1H-indazol-1-yl)methane ligand enabled the achievement of a remarkable luminescent yield (2.5%) in solution, showcasing the great potential of this novel class of copper(I) complexes for potential applications in luminescent devices and/or photocatalysis.

4.
J Phys Chem A ; 125(48): 10379-10391, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34812036

RESUMO

Aluminyl anions are low-valent aluminum species bearing a lone pair of electrons and a negative charge. These systems have drawn recent synthetic interest for their nucleophilic nature, allowing for the activation of σ-bonds, and have been proposed as a pathway to hydrogen energy storage. In this research, we provide high-level ab initio geometries and energies for both the simplest aluminyl anion (AlH2-) and several substituted derivatives. Geometries are reported using the gold-standard CCSD(T)/aug-cc-pV(T+d)Z level of theory. Energies were extrapolated to the complete basis set limit through the focal point approach, utilizing coupled-cluster methods through perturbative quadruples and basis sets up to five-ζ quality. Geometries were rationalized using electrostatic, steric, and orbital donation effects. The donation from substituents to Al is accompanied by back-donation effects, a property traditionally thought of in transition-metal systems. Stereoelectronic effects through the secondary orbital interaction play a fundamental role in stabilizing these low-valent aluminum compounds and would likely also affect the feasibility of their use within several industrial applications. The energetic analysis of the formation of each substituted anion is rationalized as the result of three energetic schemes. The effectiveness of these schemes for determining the relative formation energies is discussed.

5.
Chemistry ; 27(69): 17369-17378, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34613646

RESUMO

Aluminyl anions are low-valent, anionic, and carbenoid aluminum species commonly found stabilized with potassium cations from the reaction of Al-halogen precursors and alkali compounds. These systems are very reactive toward the activation of σ-bonds and in reactions with electrophiles. Various research groups have detected that the potassium atoms play a stabilization role via electrostatic and cation ⋯ π interactions with nearby (aromatic)-carbocyclic rings from both the ligand and from the reaction with unsaturated substrates. Since stabilizing K⋯H bonds are witnessed in the activation of this class of molecules, we aim to unveil the role of these metals in the activation of the smaller and less polarizable H2 molecule, together with a comprehensive characterization of the reaction mechanism. In this work, the activation of H2 utilizing a NON-xanthene-Al dimer, [K{Al(NON)}]2 (D) and monomeric, [Al(NON)]- (M) complexes are studied using density functional theory and high-level coupled-cluster theory to reveal the potential role of K+ atoms during the activation of this gas. Furthermore, we aim to reveal whether D is more reactive than M (or vice versa), or if complicity between the two monomer units exits within the D complex toward the activation of H2 . The results suggest that activation energies using the dimeric and monomeric complexes were found to be very close (around 33 kcal mol-1 ). However, a partition of activation energies unveiled that the nature of the energy barriers for the monomeric and dimeric complexes are inherently different. The former is dominated by a more substantial distortion of the reactants (and increased interaction energies between them). Interestingly, during the oxidative addition, the distortion of the Al complex is minimal, while H2 distorts the most, usually over 0.77 Δ E d i s t ≠ . Overall, it is found here that electrostatic and induction energies between the complexes and H2 are the main stabilizing components up to the respective transition states. The results suggest that the K+ atoms act as stabilizers of the dimeric structure, and their cooperative role on the reaction mechanism may be negligible, acting as mere spectators in the activation of H2 . Cooperation between the two monomers in D is lacking, and therefore the subsequent activation of H2 is wholly disengaged.

6.
Chem Commun (Camb) ; 57(80): 10327-10330, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34490873

RESUMO

A neutral trialuminum complex incorporates a pentacoordinate carbon through a methylidene bridge linking the three metal atoms. The rigid electron-deficient Al3 core stabilizes the hypercoordinate carbon atom resulting in the shortest equatorial Al-C distance reported for such an Al3-(µ3-CH2) unit.

7.
Photochem Photobiol ; 97(1): 99-109, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33053203

RESUMO

Phytochromes are ubiquitous photoreceptors found in plants, eukaryotic algae, bacteria and fungi. Particularly, when bacteriophytochrome is irradiated with light, a Z-to-E (photo)isomerization takes place in the biliverdin chromophore as part of the Pr-to-Pfr conversion. This photoisomerization is concomitant with a bathochromic shift in the Q-band. Based on experimental evidence, we studied a possible keto-enol tautomerization of BV, as an alternative reaction channel after its photoisomerization. In this contribution, the noncatalyzed and water-assisted reaction pathways for the lactam-lactim interconversion through consecutive keto-enol tautomerization of a model BV species were studied deeply. It was found that in the absence of water molecules, the proton transfer reaction is unable to take place at normal conditions, due to large activation energies, and the endothermic formation of lactim derivatives prevents its occurrence. However, when a water molecule assists the process by catalyzing the proton transfer reaction, the activation free energy lowers considerably. The drastic lowering in the activation energy for the keto-enol tautomerism is due to the stabilization of the water moiety through hydrogen bonds along the reaction coordinate. The absorption spectra were computed for all tautomers. It was found that the UV-visible absorption bands are in reasonable agreement with the experimental data. Our results suggest that although the keto-enol equilibrium is likely favoring the lactam tautomer, the equilibrium could eventually be shifted in favor of the lactim, as it has been reported to occur in the dark reversion mechanism of bathy phytochromes.

8.
Inorg Chem ; 60(2): 1172-1182, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33373208

RESUMO

A new iodide aluminum complex ({AlI(κ4-naphbam)}, 3) supported by a tetradentate amidinate ligand derived from a naphthalene-1,8-bisamidine precursor (naphbamH, 1) was obtained in quantitative yield via reaction of the corresponding methyl aluminum complex ({AlMe(κ4-naphbam)}, 2) with 1 equiv of I2 in CH2Cl2 at room temperature. Complexes 2 and 3 were tested and found to be active as catalysts for the cyclic carbonate formation from epoxides at 80 °C and 1 bar of CO2 pressure. A first series of experiments were carried out with 1.5 mol % of the alkyl complex 2 and 1.5 mol % of tetrabutylammonium iodide (TBAI) as a cocatalyst; subsequently, the reactions were carried out with 1.5 mol % of iodide complex 3 as a single-component catalyst. Compound 3 is one of the first examples of a nonzwitterionic halide single-component aluminum catalyst producing cyclic carbonates. The full catalytic cycle with characterization of all minima and transition states was characterized by quantum chemistry calculations (QCCs) using density functional theory. QCCs on the reaction mechanism support a reaction pathway based on the exchange of the iodine contained in the catalyst by 1 equiv of epoxide, with subsequent attack of I- to the epoxide moiety producing the ring opening of the epoxide. QCCs triggered new insights for the design of more active halide catalysts in future explorations of the field.

9.
J Phys Chem A ; 124(6): 1121-1133, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-31948229

RESUMO

The chemistry of low-valent main group elements has attracted much attention in the past decade. These species are relevant because they have been able to mimic transition metal behavior in catalytic applications, with decreased material costs and diminished toxicity. In this contribution, we study the L1EH catalysts (E = Si(II), Ge(II), Sn(II), and Pb(II); L1 = [ArNC(Me)CHC(Me)NAr] with Ar = 2,6-iPr2C6H3) for the formation of formic acid derivatives through hydroboration of CO2. Detailed characterization of relevant structures on the potential energy surface enabled us to rationalize different paths for the hydroboration of CO2. Interestingly, it was found that according to the activation energies for the whole catalytic cycle, the process of transformation of CO2 becomes more favored going down group 14. However, an effective energetic decrease for the process (taking as the reference the uncatalyzed reaction between CO2 and HBpin) is evidenced just from the germanium analogue. The trend in reactivity found in the present study is a direct consequence of the change in the central main group element, enabling enhanced polar character of the E-H (L1EH in the CO2 activation step) and E-O (metal formates in the hydroboration step) bonds as the atomic radius increases. The transient stabilization of reaction intermediates found in the hydroboration step was rationalized through the non-covalent interaction index (NCI) and symmetry-adapted perturbation theory (SAPT). This computational study highlights the reactivity trends in group-14-based hydride catalysts in hydrometalation and posterior hydroboration to form formic acid intermediates. We hope that this study will motivate further experimental work in low-valent lead chemistry.

10.
J Mol Model ; 26(2): 33, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31982975

RESUMO

The non-dissociative and dissociative adsorptions of zwitterionic Gly on graphene oxide (GO) was studied in the framework of DFT using a cluster model approach. In this work, the interaction with an epoxy group of GO basal plane was mainly considered. As a comparison, the non-dissociative and dissociative adsorptions of neutral Gly were also taken into account. The non-dissociative adsorption modes for zwitterionic and neutral Gly conformers show binding energies of 12.2 and 14.4 kcal mol-1, respectively. These molecules are thought to remain over the GO surface due to attractive noncovalent interactions. Two dissociative adsorption modes, for Z-Gly and N-Gly, show smaller binding energies of 7.2 and 8.4 kcal mol-1, where the deprotonated species links strongly through a C-O or C-N covalent bond to the GO surface. The results obtained in the present theoretical approach to the glycine/graphene oxide system support the fact that glycine can be attached to epoxy groups of graphene oxide basal planes in addition to the anchoring on edge oxidation groups. In summary, we conclude that glycine can be used as a reducing agent as well as a functionalizer of GO sheets.


Assuntos
Glicina/química , Grafite/química , Modelos Químicos , Adsorção
11.
Phys Chem Chem Phys ; 21(9): 5039-5048, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30762038

RESUMO

Fullerenes, in particular C60, are important molecular entities in many areas, ranging from material science to medicinal chemistry. However, chemical transformations have to be done in order to transform C60 in added-value compounds with increased applicability. The most common procedure corresponds to the classical Diels-Alder cycloaddition reaction. In this research, a comprehensive study of the electronic activity that takes place in the cycloaddition between C60 and cyclopentadiene toward the [5,6] and [6,6] reaction pathways is presented. These are competitive reaction mechanisms dominated by σ and π fluctuating activity. To better understand the electronic activity at each stage of the mechanism, the reaction force (RF) and the symmetry-adapted reaction electronic flux (SA-REF, JΓi(ξ)) have been used to elucidate whether π or σ bonding changes drive the reaction. Since the studied cycloaddition reaction proceeds through a Cs symmetry reaction path, two SA-REF emerge: JA'(ξ) and JA''(ξ). In particular, JA'(ξ) mainly accounts for bond transformations associated with π bonds, while JA''(ξ) is sensitive toward σ bonding changes. It was found that the [6,6] path is highly favored over the [5,6] with respect to activation energies. This difference is primarily due to the less intensive electronic reordering of the σ electrons in the [6,6] path, as a result of the pyramidalization of carbon atoms in C60 (sp2 → sp3 transition). Interestingly, no substantial differences in the π electronic activity from the reactant complex to the transition state structure were found when comparing the [5,6] and [6,6] paths. Partition of the kinetic energy into its symmetry contributions indicates that when a bond is being weakened/broken (formed/strengthened) non-spontaneous (spontaneous) changes in the electronic activity occur, thus prompting an increase (decrease) of the kinetic energy. Therefore, contraction (expansion) of the electronic density in the vicinity of the bonding change is expected to take place.

12.
J Org Chem ; 83(11): 5969-5974, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29486121

RESUMO

The reaction electronic flux (REF) offers a powerful tool in the analysis of reaction mechanisms. Noteworthy, the relationship between aromaticity and REF can eventually reveal subtle electronic events associated with reactivity in aromatic systems. In this work, this relationship was studied for the triplet Zimmerman di-π-methane rearrangement. The aromaticity loss and gain taking place during the reaction is well acquainted by the REF, thus shedding light on the electronic nature of reactions involving dibenzobarrelenes.

13.
Phys Chem Chem Phys ; 19(40): 27275-27287, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28868538

RESUMO

Vinyl alcohol and acetaldehyde are isoelectronic products of incomplete butanol combustion. Along with the radicals resulting from the removal of atomic hydrogen or the hydroxyl radical, these species are studied here using ab initio methods as complete as coupled cluster theory with single, double, triple, and perturbative quadruple excitations [CCSDT(Q)], with basis sets as large as cc-pV5Z. The relative energies provided herein are further refined by including corrections for relativistic effects, the frozen core approximation, and the Born-Oppenheimer approximation. The effects of anharmonic zero-point vibrational energies are also treated. The syn conformer of vinyl alcohol is predicted to be lower in energy than the anti conformer by 1.1 kcal mol-1. The alcoholic hydrogen of syn-vinyl alcohol is found to be the easiest to remove, requiring 84.4 kcal mol-1. Five other radicals are also carefully considered, with four conformers investigated for the 1-hydroxyvinyl radical. Beyond energetics, we have conducted an overhaul of the spectroscopic literature for these species. Our results also provide predictions for fundamental modes yet to be reported experimentally. To our knowledge, the ν3 (3076 cm-1) and ν4 (2999 cm-1) C-H stretches for syn-vinyl alcohol and all but one of the vibrational modes for anti-vinyl alcohol (ν1-ν14) are yet to be observed experimentally. For the acetyl radical, ν6 (1035 cm-1), ν11 (944 cm-1), ν12 (97 cm-1), and accounting for our changes to the assignment of the 1419.9 cm-1 experimental mode, ν10 (1441 cm-1), are yet to be observed. We have predicted these unobserved fundamentals and reassigned the experimental 1419.9 cm-1 frequency in the acetyl radical to ν4 rather than to ν10. Our work also strongly supports reassignment of the ν10 and ν11 fundamentals of the vinoxy radical. We suggest that the bands assigned to the overtones of these fundamentals were in fact combination bands. Our findings may be useful in constructing improved combustion models of butanol and in spectroscopically characterizing these molecules further.

14.
J Mol Model ; 23(8): 234, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28733881

RESUMO

This contribution presents a computational study aimed at understanding factors affecting barriers associated with the activation of the H-H bond in molecular hydrogen and the H-CH3 bond in methane mediated by intermolecular Frustrated Lewis Pairs (FLPs). The classical phosphine P(t-Bu)3 Lewis base in conjunction with two Lewis acids, B(C6F5)3 and Al(C6F5)3, were used as representative models of intermolecular FLPs. DFT calculations were performed using the dispersion corrected ωB97x-D functional, including toluene as a solvent through the PCM-SMD implicit solvent scheme. The results show that, in all cases, the activation barrier is larger for methane than for hydrogen. We conclude that the observed increase in the barrier for methane activation is due primarily to a larger distortion in methane compared to hydrogen to reach the transition state. Second, a large distortion of the Lewis acid to attain a better interaction with the σ-bond in methane was observed. Finally, we found that, for both hydrogen and methane activation, a considerable reduction in the free energy activation barrier is observed when the Lewis acid Al(C6F5)3 is used. From the results extracted in this study, we propose the use of alanes acids as good candidates for methane activation.

15.
Chemistry ; 23(54): 13360-13368, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28593693

RESUMO

In this work, a detailed characterization was carried out of the ring-closure mechanism of EPB (1-ethynyl-2-(phenylethynyl)benzene) toward the 5-exo-dig and 6-endo-dig cyclization reactions, catalyzed by two Au-N-heterocyclic carbene (NHC) moieties. It was found that the 5-exo-dig cyclization takes place with a slightly lower activation barrier and larger exothermicity compared to that of the 6-endo-dig cyclization, in agreement with the available experimental data. A phenomenological partition (structural and electronic) for rate constants computed using transition-state theory and the reaction force analysis was used to shed light into the nature of the activation rate constant. It was found that rate constants are influenced by a strong structural component, which is larger for the 5-exo-dig cyclization due to the strain to form the five-membered ring. On the other hand, the gold activation mechanism is evidenced by a σ- and π-coordination of the Au-NHC moieties to the EPB substrate. It was found that differences in the σ-coordination arise on the reaction path for the 5-exo-dig and 6-endo-dig cyclizations. Thus, in the 6-endo-dig cyclization the σ gold-EPB interaction is weakened as a consequence of the formation of the cationic aryl intermediate, while for the 5-exo-dig cyclization this interaction was found to be favored. Furthermore, although minor changes in the Au-EPB coordination occur on the reaction path, these bonds are formally established in the TS vicinity. Results support the concerted nature of the dual gold activation mechanism.

16.
Phys Chem Chem Phys ; 19(6): 4179-4189, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-27990518

RESUMO

The interaction of formaldehyde (H2CO) onto Fe-doped graphene (FeG) was studied in detail from density functional theory calculations and electronic structure analyses. Our aim was to obtain insights into the adsorption, desorption and sensing properties of FeG towards H2CO, a hazardous organic compound. The adsorption of H2CO was shown to be energetically stable onto FeG, with adsorption energies of up to 1.45 eV and favored in different conformations. This interaction was determined to be mostly electrostatic in nature, where the oxygen plays an important role in this contribution; besides, our quantum molecular dynamics results showed the high stability of the FeG-H2CO interaction at ambient temperature (300 K). All the interactions were determined to be accompanied by an increase in the HOMO-LUMO energy gap with respect to the isolated adsorbent, indicating that FeG is highly sensitive to H2CO with respect to pristine graphene. Finally, it was found that external electric fields of 0.04-0.05 a.u. were able to induce the pollutant desorption from the adsorbent, allowing the adsorbent reactivation for repetitive applications. These results indicate that FeG could be a promising candidate for adsorption/sensing platforms of H2CO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...